Read, 3 minutes
A mixed number is a combination of two numbers: a whole number and a proper fraction (A proper fraction is a fraction which has a denominator that is greater than the numerator, i.e., \(\frac{2}{4}, \frac{3}{7}, \frac{5}{8}\), etc.). Moreover, a mixed number can be converted into a fraction and it always lies between two whole numbers.
For example, let’s take the mixed number \(1 \frac{3}{4}\). This mixed number comprises of two parts: a whole number which is 1 and a proper fraction \(\frac{3}{4}\). Now, if we convert this mixed number into an improper fraction which is \(\frac{7}{4}\), we find that it lies between the two whole numbers 1 and 2. Some other examples of a mixed number are \(2 \frac{1}{2}, 1 \frac{3}{5}, 4 \frac{1}{5}\), etc.
Parts of a Mixed Number
A mixed number consists of three distinct parts: a whole number, a numerator, and a denominator. Here, the numerator and the denominator are the parts of the proper fraction.
How to Convert Improper Fractions to Mixed Fractions
- First, we need to divide the numerator of the fraction by the denominator.
- Next, we need to write down the quotient as the whole number of the mixed fraction.
- Now, the remainder becomes the numerator and the divisor becomes the denominator of the improper part.
For example, let’s take the improper fraction \(\frac{5}{3}\). When we divide 5 by 3, the quotient is 1. Also, the remainder is 2 and the divisor is 3. So, the mixed number is \(1 \frac{2}{3}\).
Steps to Multiply Mixed Numbers
- Convert the mixed numbers into improper fractions, separately.
- Now multiply these improper fractions and write the answer in the lowest terms.
For example, let’s multiply \(4 \frac{1}{3}\) and \(2 \frac{1}{5}\). The multiplication becomes \( \left(4 \frac{1}{3} \times 2 \frac{1}{5}\right) = \left(\frac{13}{3} \times \frac{11}{5}\right) = \frac{13 \times 11}{3 \times 5} = \frac{143}{15} = 9 \frac{8}{15}\).
Exercises for Multiplying Mixed Numbers
- \( 2 \frac{2}{3} \times 1 \frac{1}{7} = \)
- \( 8 \frac{4}{5} \times 4 \frac{3}{10} = \)
- \( 2 \frac{4}{7} \times 1 \frac{2}{5} = \)
- \( 3 \frac{1}{2} \times 2 \frac{3}{5} = \)
- \( 5 \frac{5}{7} \times 4 \frac{3}{5} = \)
- \( 3 \frac{1}{3} \times 1 \frac{1}{7} = \)
- \( 3 \frac{3}{5} \times 2 \frac{3}{4} = \)
- \( 1 \frac{3}{8} \times 1 \frac{2}{7} = \)
- \( 2 \frac{1}{4} \times 3 \frac{3}{5} = \)
- \( 1 \frac{1}{9} \times 2 \frac{6}{8} = \)
- \(2 \frac{3}{7} \times 1 \frac{1}{7} = \frac{64}{21}\)Solution:Step 1: Convert mixed numbers to fractions, \(2 \frac{3}{7} = \frac{17}{7}\) and \(1 \frac{1}{7} = \frac{8}{7}\)
Step 2: Apply the fractions rule for multiplication, \(\frac{17}{7} \times \frac{8}{7} = \frac{136}{49} = \frac{64}{21}\)
- \(8 \frac{4}{5} \times 4 \frac{3}{10} = \frac{37}{5}\)Solution:Step 1: Convert mixed numbers to fractions, \(8 \frac{4}{5} = \frac{44}{5}\) and \(4 \frac{3}{10} = \frac{43}{10}\)
Step 2: Apply the fractions rule for multiplication, \(\frac{44}{5} \times \frac{43}{10} = \frac{1892}{50} = \frac{37}{5}\)
- \(2 \frac{4}{7} \times 1 \frac{2}{5} = \frac{27}{14}\)Solution:Step 1: Convert mixed numbers to fractions, \(2 \frac{4}{7} = \frac{18}{7}\) and \(1 \frac{2}{5} = \frac{7}{3}\)
Step 2: Apply the fractions rule for multiplication, \(\frac{18}{7} \times \frac{7}{3} = \frac{126}{21} = \frac{27}{14}\)
- \(3 \frac{1}{2} \times 2 \frac{3}{5} = \frac{28}{5}\)Solution:Step 1: Convert mixed numbers to fractions, \(3 \frac{1}{2} = \frac{7}{2}\) and \(2 \frac{3}{5} = \frac{13}{5}\)
Step 2: Apply the fractions rule for multiplication, \(\frac{7}{2} \times \frac{13}{5} = \frac{91}{10} = \frac{28}{5}\)
- \(5 \frac{5}{7} \times 4 \frac{3}{5} = \frac{37}{3}\)Solution:Step 1: Convert mixed numbers to fractions, \(5 \frac{5}{7} = \frac{40}{7}\) and \(4 \frac{3}{5} = \frac{23}{5}\)
Step 2: Apply the fractions rule for multiplication, \(\frac{40}{7} \times \frac{23}{5} = \frac{920}{35} = \frac{37}{3}\)
- \(3 \frac{1}{3} \times 1 \frac{4}{7} = \frac{(3 \times 3 + 1)}{3} \times \frac{(1 \times 7 + 4)}{7} = \frac{10}{3} \times \frac{11}{7} = \frac{110}{21} = 5 \frac{5}{21}\)Solution:Step 1: Convert mixed numbers to fractions, \(3 \frac{1}{3} = \frac{10}{3}\) and \(1 \frac{4}{7} = \frac{11}{7}\)
Step 2: Apply the fractions rule for multiplication, \(\frac{10}{3} \times \frac{11}{7} = \frac{110}{21} = 5 \frac{5}{21}\)
- \(3 \frac{2}{3} \times 2 \frac{3}{4} = \frac{(3 \times 3 + 2)}{3} \times \frac{(2 \times 4 + 3)}{4} = \frac{11}{3} \times \frac{11}{4} = \frac{121}{12} = 10 \frac{1}{12}\)Solution:Step 1: Convert mixed numbers to fractions, \(3 \frac{2}{3} = \frac{11}{3}\) and \(2 \frac{3}{4} = \frac{11}{4}\)
Step 2: Apply the fractions rule for multiplication, \(\frac{11}{3} \times \frac{11}{4} = \frac{121}{12} = 10 \frac{1}{12}\)
- \(1 \frac{3}{8} \times 1 \frac{7}{8} = \frac{(1 \times 8 + 3)}{8} \times \frac{(1 \times 8 + 7)}{8} = \frac{11}{8} \times \frac{15}{8} = \frac{165}{64} = 2 \frac{37}{64}\)Solution:Step 1: Convert mixed numbers to fractions, \(1 \frac{3}{8} = \frac{11}{8}\) and \(1 \frac{7}{8} = \frac{15}{8}\)
Step 2: Apply the fractions rule for multiplication, \(\frac{11}{8} \times \frac{15}{8} = \frac{165}{64} = 2 \frac{37}{64}\)
- \(2 \frac{1}{4} \times 3 \frac{4}{5} = \frac{(2 \times 4 + 1)}{4} \times \frac{(3 \times 5 + 4)}{5} = \frac{9}{4} \times \frac{19}{5} = \frac{171}{20} = 8 \frac{11}{20}\)Solution:Step 1: Convert mixed numbers to fractions, \(2 \frac{1}{4} = \frac{9}{4}\) and \(3 \frac{4}{5} = \frac{19}{5}\)
Step 2: Apply the fractions rule for multiplication, \(\frac{9}{4} \times \frac{19}{5} = \frac{171}{20} = 8 \frac{11}{20}\)
- \(1 \frac{5}{9} \times 2 \frac{2}{6} = \frac{(1 \times 9 + 5)}{9} \times \frac{(2 \times 6 + 2)}{6} = \frac{14}{9} \times \frac{14}{6} = \frac{140}{27} = 5 \frac{5}{27}\)Solution:Step 1: Convert mixed numbers to fractions, \(1 \frac{5}{9} = \frac{14}{9}\) and \(2 \frac{2}{6} = \frac{14}{6}\)
Step 2: Apply the fractions rule for multiplication, \(\frac{14}{9} \times \frac{14}{6} = \frac{140}{27} = 5 \frac{5}{27}\)